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SUMMARY

A Markovian queue with number of servers depending upon queue length is discussed. Whenever the queue in front of
the first server reaches a certain length, the system starts another server. There are costs associated with the opening
of a new server and the waiting of the customers. A relationship among the costs, traffic intensity and the queue size
is obtained.

1. Introduction

In many situations when there are too many people waiting to be served in front of a service
facility, the system opens another service facility to reduce congestion. For example, this
happens in the banks and at the checkout counters in the department and grocery stores over
the weekends. ‘

In this paper we study a Markovian queue in such a way that a new service facility is provided
by the system whenever the queue in front of a server reaches a certain length. The different
servers may either have the same or different service rates. A new service facility is started at
some cost to the system. There is also a cost associated with the difference in the average number
of customers in a single server system and the new system. For the case of two homogeneous
servers, a relationship is developed among the costs, the traffic intensity p and the maximum
allowable queue size N in front of the first server. For different values of N and p, the ratio of the
costs is given in a table. This situation is then discussed for the case of three homogeneous
servers. Finally the case of two heterogeneous servers is discussed.

2. The queue M/M/2 with number of servers depending on gueue length

Customers arrive at a single service counter following an orderly, stationary Poisson stream
without after effects with parameter .. Whenever there are N customers In the queue, the service
system starts another server to reduce congestion. It costs ¢, dollars to the system to provide
the second server. The service time distribution for each server is negative exponential with
parameter p.

Let P, denote the steady-state probability that there are n customers in the system at any
time. Then the balance equations for the above system take the following form:

'lPOZP'PI’

(l_}_p')Pn:}*Pn—l_}_p'Pn-f—l» 1§H<N,
(i+u)PN=}‘PN—1+2#PN+17 n:N,
(A+2p)P, =P, +2pP,.,, n>N.

The solution of the above system of equations is

(1-p)2-p) 4
== where p = —,
Py 1= p where p p
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Prob {second server is operating} = Prob {n >N}
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The average number of customers in the system is given by:

E(Q,)= ) nP,=P, Y np"+Py2V Y
n=0

n=N+1

N
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(1-p)2N—pN+2)p""!

T (=pp=p") T

E(Q,)=p/(1-p)

(1-p)2~p—p""")

Recall that the corresponding expression in a single server system is:

2=p)2=p=p""")

Let ¢, be the unit cost associated with E(Q,)—E(Q,). From the point of view of this cost and
the cost in starting a second server, it is profitable for the system to have the second server only if

¢, (E(Q,)—E(Q;)) > ¢, Prob{n> N},

ie.,
. ( P p(2-p)
1 N+1
l—p  (1-p)2=—p—p""")
y N+1
pe P <(2—p)(N~pN+1) (L-p)eN-pN+2)\  ~ (—p)p
1 - 2 N+1)°*
2—p—p™"" (1=p) (2-p) @=p=p"")

TABLE 1
Upper bounds for c,/c;.
Np ol 0.2 03 0.4 0.5 0.6 0.7 038 0.9

1 228 2.64 3.11 3.75 467 6.07 8.46 13.33 28.18

2 3.39 3.89 454 541 6.67 857  11.80 18.33 38.18

3 4.50 5.14 596 7.08 867 1107 1513 2333 48.18

4 5.61 6.39 7.39 875 1067 1357 1846 28.33 58.18

5 6.72 7.64 882 1041 1267 1607  21.08 33.33 68.18

6 7.83 889 1025 1208 1467 1857  25.13 38.33 78.18

7 894 1014 1168 1375 1667 2107 2846 4333 88.18

8 1005 1139 1310 1541 1867 2357 3179 4833 98.18

9 1116 1264 1453 1708 2067 2607 3513 5333 108.18
10 1228 1389 1596 1875 - 2267 2857 3846 5833 118.18
11 1339 1514 1739 2041 2467 3107 4179 6333 12818
12 1450 1639 1882 2208 2667 3357 4513 6833  138.18
13 1561 1764 2024 2375 2867 3607 4846 7333 148.18
14 1672 1889 2167 2541 3067 3857 5179 7833 158.18
15 1784 2014 2310 2708 3267 3107 5513 8333 16818
16 1895 2139 2453 2875 3467 4357 5846 8833  178.18
17 2006 2264 2596 3041 3667 4607 6179 9333  188.18
18 2117 2389 2738 3208 3867 4857  65.13 98.33 19818
19 2228 2514 2881 3375 4067 5107 6846 10333  208.18
20 2339 2639 3024 3541 4267 5357 7179 10833 21818
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cl'((l___pz) + ¢ <N(2—p) + <2_—_p> - N(1—p)—-2<;—:g> >> (1—p)cy,

I—p
2
N>(1-p) 2 - —
>(=p =5,
Let c*=c,/c,, then the above inequality can be written as
c* < N + 2
I-p  (1-p)2~p)

It is to be noted that the above relation depends only on c¢*, N and p. Thus, given any two of
these, the best value of the third quantity can be computed. Table 1 gives upper bounds for
c* for specific values of N and p.

3. The queue M/M/3

We now consider the case in which the system already has two servers and starts a third server.
Let N and M are the numbers in the queue when servers 2 and 3 are started up respectively.
The balance equations for this system take the following form:

}'P0=u'P1 s

Pn :an—1+uPn+1a 1§n<N,
Py = APy_1+2uPyy1,

(A+2u)P, =AP,_,+2uP,.,, N<n<M,
(A+2u) Py = APy_1+3uPy 1,

( )Pn =an—1+3u’Pn+17 n>M.

(A+p)
(A+n)

A+u

A+3pu

The following solution to the above system of equations can be verified:

p _[2_p_pN+1 ~ pMH1 :l—1
0 - _ b
(1-p)2—p) 2¥7"(2-p)3-p)
o"P, 0<n<N
P, ={2N_"p"P0 N<n<M

N-M3M=npnpy n>M

The average number of customers in the system is:

E(Q;) = i nP,
= P, ["; np"+ 28 ,,=;+1 n (§>n 4 N-M3M ,,=§‘+1 n (g)n}
=| e P (V=N 1) + (s (N pN-+ 2= QM= pM 422 12F)

I\ ey IM—pM 43
- - — _|P,.
+<2> P G-py |°

Let it cost ¢, dollars to the system to provide the third server and let ¢, be the unit cost associated
with the differences in the average number of customers in the single server and two server,
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and two server and three server systems. Then it will be profitable for the system to have the
third server only if

¢, (E(Q,))—E(Qs3)) > ¢, Prob(n > M),
c1(E(Q1)—E(Q3)) > ¢, Prob(N <n £ M)+ c5 Prob(n > M).

4. The queue M/M /2

The analogous results for two (2) and three (3) heterogeneous servers can be easily obtained.
For example, in a two (2) server heterogeneous system, M/M, /2, where u; and p, are the service
rates for the first and second server respectively. The balance equations are:

APy=p, Py,
()"_I—“I)Pn:/u)n—l_l—“lpn-l—la 1§n<N,
(A+u)Py=APy_+uPy.y,

(’?"_I—H')Pn =APn—1+H’Pn+19 71>N,
and
{p'{Po, 0<n<N

p"(p1/pY' Py, nzN
where
pr=Au, p=Au, u=pit+iu,,
Py=(1=p)(1=p)/(1—p—(p1—p)pY).
p

Probability (n> N) = = oY P, ,
1—(N+1—Np,)pY N+1-Np)pV+!
E(Q,) = [Pl ( (l_pl)zpl)pl + (P1/P)N( (l—pszp ]Po.

In this case, it is profitable for the system to have the second server operating only when the
following inequality is satisfied.

1—

N > ¢* B.(___.p_l) _L .
pi—p 1-p
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